
The winding angle distribution of an ordinary random walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 4421

(http://iopscience.iop.org/0305-4470/20/13/042)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 31/05/2010 at 12:07

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/13
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J.  Phys. A: Math. Gen. 20 (1987) 4421-4438. Printed in the U K  
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Department of Physics, University of California at Los Angeles, Los Angeles, CA 90024, 
USA 

Received 28 October 1986 

Abstract. The winding angle about a selected point of a random walk quantifies what is 
perhaps the simplest manifestation of entanglement, a phenomenon of great importance 
in the study of polymers. The distribution of winding angles is studied here for ordinary 
or non-self-avoiding walks. New results highlight the crucial influence of the exclusion of 
a finite region about the selected point on the winding angle distribution. The results of 
this analysis are compared with simulations of random walks on a lattice; the agreement 
between the two is very good. There are, however, small and as yet unexplained dis- 
crepancies. 

1. Introduction 

A two-dimensional random walker that starts out in the vicinity of some point on a 
plane will, in the course of its wanderings, tend to follow a path that wraps around 
that point. By the same token, a long-chain polymer that grows in the vicinity of a 
long straight rod will, in all likelihood, end up wrapped around the rod. This latter 
process represents what may be the simplest manifestation of the phenomenon of 
entanglement. One measures the extent of the wrapping in both cases via the winding 
angle, which is just the angle about the rod or reference point that is swept out by the 
growing polymer or random walker. How this quantity is defined for a random walk 
in a plane is illustrated in figure 1. 

Y 

Figure 1. A typical path of a random walk on a square lattice. The winding angle is 
measured with respect to the direction of the first step. In this figure the first step is in the 
x direction and the winding angle 8 = 7.07 rad. 
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In this paper we present some new results pertaining to the distribution of winding 
angles of unrestricted random walks in a plane. These results generalise straightfor- 
wardly to the case of a random walker in d dimensions whose path wraps around a 
( d  -2)-dimensional ‘rod’. They are not directly applicable in unmodified form to a 
polymer in the vicinity of a rod in three dimensions, because the statistics of a long-chain 
polymer are those of a selfavoiding rather than the unrestricted random walk. In the 
light of current knowledge about polymer statistics it is, however, reasonable to expect 
the distribution of winding angles for a chain polymer in 4 - E dimensions to approach, 
as E -0,  the winding angle distribution for unrestricted walks (Ma 1976). An E 

expansion ought to yield the appropriate corrections to the unrestricted walk distribu- 
tion when E is small. There is, in addition, a case in which we expect our results to 
apply directly to polymers in a physical dimensionality. At the 0 point, where attractive 
interactions between monomeric units are on the threshold of having sufficient strength 
to cause polymeric collapse, a chain polymer in three dimensions has essentially the 
same statistics as an unrestricted random walk. Our results should be exact at this 
multicritical point, subject to ‘marginal’ corrections (de Gennes 1975). 

The winding angle distribution for unrestricted random walks was first studied by 
Spitzer (1958) (see also Pitman and Yor 1986) some years ago. He analysed random 
walks in the continuum-or diffusion equation-limit and derived an expression for 
the winding angle distribution of an N-step walk, P N (  e) ,  whose form is equivalent to 
the following: 

1 c l n ( N )  
r (c1n(N))’+O2 

p N ( e )  =- N >> 1 

where the quantity c is a constant. This Lorentzian-like or Cauchy distribution has 
two noteworthy features. First, its width grows as ln(N),  i.e. quite slowly with the 
number of steps in the walk. This kind of behaviour is reasonable. As N grows the 
walker tends to get further and further away from the origin and the increment in 
the winding angle with each step ought to get smaller and smaller on average as N 
increases. Second, (1.1) predicts an injnite second moment for P N ( 8 ) :  

dB = 03. 
cln(N)B’ - 

- j-m ( c In( N)  )’ + O 2  

The second property mentioned above is obviously very troubling. By construction, 
the winding angle of a walk with a finite number of steps cannot have an infinite 
second moment. An absolute upper bound is 

e’< cN’ (1 .3)  
where c is a constant. This latter feature of Spitzer’s formula appears to signal a 
breakdown of the diffusion equation approach. In particular, while ( 1  - 1 )  implies 

for - 1  < v < 1,  it is natural to ask, in the light of the above, whether higher moments 
for real random walks will scale in the same way or whether they increase qualitatively 
more rapidly with N. 
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A more recent investigation of the winding angle distribution, by Fisher er a1 (1984), 
brings numerical methods to bear on the problem for self-avoiding walks in a plane. 
Fisher er a1 find in this case that the second moment of 8 scales as follows with N :  

- 
e*= (In N)-'.  ( 1 . 9  - - 

They also find that the following relation between O 2  and O4 holds to a good approxi- 
mation: 

- -  
e4=3e2  (1.6) 

which is consistent with a Gaussian form for P N ( e ) .  This points to what appears to 
be a striking contrast between unrestricted and self-avoiding walks. 

One can see later (appendix 2 )  that the divergence of the second moment in Spitzer's 
formula arises from the fact that in Spitzer's treatment of the continuous approximation 
the walker is allowed to approach the reference point arbitrarily closely. However, in 
the case of the lattice walker if the origin is interstitial the walker cannot get any closer 
to it than the nearest vertex, while if the origin is on a vertex the walker must not be 
allowed to step on it or it would be impossible to define winding angles unambiguously. 
On the other hand, the rod around which a growing polymer wraps itself presents a 
physical barrier that keeps the polymer away from a one-dimensional region passing 
through the origin. The exclusion of a finite region about the origin is thus mathemati- 
cally well motivated for random walks on a lattice and is a consequence of physical 
considerations in the case of a polymer grown in the vicinity of a rod. 

The work described in the remainder of this paper is a new investigation of the 
winding angle problem for unrestricted random walks in a plane. The focus of this 
investigation is the behaviour of the distribution function P N ( 0 )  in the large 6 wings 
and on the consequences of this behaviour on the way in which the higher-order 
moments of PN( 0)  scale with In( N). Our most important result has to do with the 
effect on PN( e)  of not allowing the walker to enter a region of finite extent surrounding 
the reference point about which the winding angle is measured. When this restriction 
is imposed the winding angle distribution takes on a form for large 8 that differs 
qualitatively from (1.1). We find for P N ( e )  in that regime 

PN(e)aexp(-2~/811n N )  e, N >> 1. (1.7) 
Note that the exponent in (1.7) is independent of the size of the region excluded. 
Formula (1.1) is recovered as the size shrinks to zero, but only as a singular limit. All 
positive moments of PN( 0) are thus finite. In particular 

( e 2 ) a ( l n  N ) *  (1.8) 

and, in general, - 
e2 ,  cy: (In N ) ~ " '  (1.9) 

for all positive integer m. 
Our analytical results are supplemented by simulations. We obtain numerically 

winding angle distributions for a random walk on a two-dimensional square lattice 
and three-dimensional cubic lattice that are consistent with the results of our analysis. 

The remainder of this paper is organised as follows. In 0 2 we obtain the winding 
angle distribution for unrestricted random walks in the continuum approximation. We 
concentrate on the effects on the distribution that follow from the exclusion of a finite 
region about the origin. In § 3 we obtain numerical winding angle distributions using 
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both exact enumeration and Monte Carlo methods. Section 4 contains concluding 
remarks. Certain important details in the calculations described in 0 2 are relegated 
to appendices 1 and 3. In appendix 2 we recover Spitzer’s form for the winding angle 
distribution as a limit of a more general formula. This limit is achieved when the size 
of the excluded region goes to zero. 

2. Theory 

Random walks are conveniently studied with the use of generating functions (de 
Gennes 1979). Let C N ( x ’ ,  x) represent the number of N-step random walks-of any 
type-that start at the point x’ and end up at x. The generating function G(x’, x, z )  is 
given by 

L13 

G(x’, x, z) = c CN(x‘, x)z” 
N = O  

(2.1) 

This means that if we are given an expression for G(x’, x, z) we can, in principle, 
extract CN(x’, x); it is the coefficient of Z ”  in the power series expansion of G(x’, x, z ) .  

When the walk is unrestricted and on a lattice, the generating function can be 
shown to satisfy the following equation: 

1 ( z * j - ’  1 
-G(x’, X, Z) - c G(x’, X +  I , ,  Z )  ( 2 . 2 )  z n = l  Z 

In (2.2) I ,  is the displacement vector that connects the lattice point x to one of its 
(z*)-’  nearest neighbours. The walker is understood to take steps only along links 
connecting nearest-neighbour sites. We now assume that the generating function has 
a sufficiently smooth variation with x and x‘ that we can approximate it by a continuous 
function of those variables. Taylor-expanding G(x’, x +  I , ,  z )  with respect to the 1, 
and retaining terms of up to second order only we obtain the following equation for 
the generating function of the continuous variables x and x’: 

1 1 1 
-G(x’,x, z)--G(x‘,x, z) -~ ‘~V~G(X’ ,X,  z ) = - ~ ( x - x ’ ) .  (2.3) 
Z Z* 2 

We have assumed that the lattice possesses reflection symmetry. The quantity I” is 
equal to the square of the magnitude of a characteristic I ,  times a number of order 
unity. In other words, it is the order of the square of the distance covered in a single 
step in the random walk. If z = z* then we can write 

and (2.3) becomes 
Z* rG(x‘, x, z) - z*I’*V*G(x’, x, z )  = - 6(x - x’) 
Z 

2 6(x-x’ )  

or 
K*G(x’, X, Z) - V2G(x’, X, Z )  = C U ~ ( X  - x’) 
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where K ’ =  r / ( z * f f 2 )  and a = l/(z*I’’). This approximation for the equation governing 
the generating function represents the continuum or difusion equation limit for random 
walk statistics. 

In the case of the two-dimensional random walk we can transform to cylindrical 
coordinates (x  = p cos 8, y = p sin e) ,  and (2.5) becomes 

1 

P 
( i $ p & + 5 2) G( p I ,  e’, p, 8, Z )  - K’ G = -CY - 6 ( p - p ‘ )  6 ( 8 - 8 ‘ ) .  (2.6) 

The angles 8 and 8’ are commonly understood to be defined modulo 27r. If, however, 
we d o  not allow the random walker to enter a region around the origin we can take 
both 8 and 8’ to go from -CO to CO. The only proviso in this is that the walker must 
also be prohibited from taking any steps that both span the excluded region and pass 
directly over the origin. It is this new generating function that yields the winding angle 
distribution. 

We take e’, the angle at which the walker starts, to be equal to zero. Then we 
Fourier transform (2.6) with respect to 8 to obtain 

The Fourier transformed generating function G( p, p ’ ,  v, z )  is given by 

G ( p ’ , O ,  p, 8, z )  e-’”’d8. 

It is worthwhile noting the very important difference between the Fourier transform 
(2.8) that is appropriate for the generating function that we are now considering and 
the Fourier transform appropriate to the commonly studied generating function. In 
the latter case, in which angles are defined modulo 27r, the continuous variable v is 
replaced by the variable n, which can take on integer values only. The quantity that 
we are now studying is a non-trivial extension of the familiar generating function. 

We can, nevertheless, treat it in much the same way as we would the standard 
generating function for random walks. For instance, the requirement that the walker 
never enters a region around the origin can be enforced by placing an  absorbing wall 
at the perimeter of that region (Feller 1968). This kind of barrier causes the generating 
function to vanish there. To take advantage of cylindrical symmetry we exclude the 
region p < R. This means that the generating function vanishes when p or p ’  is equal 
to or less than R .  The solution to (2.7), subject to these boundary conditions and a 
constant difference, is 

where p< is the smaller, and p, is the larger, of p and p’ .  The functions K , ( x )  and 
I , ( x )  are modified Bessel functions of vth order. 

We are now in a position to extract the winding angle distribution. To d o  this we 
reconstruct the generating function G( p’,  0, p, 8, z ) ,  integrate over all possible values 
of p, the distance from the origin to the point at  which the walker ends up, and  then 
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extract the coefficient of z N  in the power series expansion of this result. According 
to (2.8) and (2.9) 

G(p’ ,O,p ,e ,z )=  G(p’ ,p ,v , z )e iUedv  

As noted above we integrate this function over all values of p to obtain the winding 
angle distribution P( 8, z). More specifically, 

(2.11) 

Note that the winding angle distribution depends on p‘ ,  the random walker’s initial 
distance from the origin. This dependence will not be strong if the walk consists of 
enough steps. It will thus be neglected. 

[ G(p ’ ,  0, p, 8, z)p dp  = [ G(p’,  0, p, 4 z)p d p + l  G(p’,  0, P, 8, : ) P  dp. (2.12) 

If p’ is not too large the first term on the left-hand side of (2.12) can be neglected 
as compared to the second. Doing this and using (2.10) we have 

We can write 
oc P ’  cc 

R P ’  

It turns out to be sufficient to replace the lower limit in the integral over p by 0. This 
integral then yields the multiplicative factor 

(2.14) 

A table of integrals (Abramowitz and Stegun 1964) was used to obtain the final equality 
in (2.14). Note that when v >  2 the integrals in (2.14) are not convergent and the lower 
limit cannot be replaced by 0. 

The problem of extracting the coefficient of z N  in the power series expansion of 
the function P( 8, z) is reviewed in appendix 1. Here we simply note the result of the 
analysis that is carried out there. We find in appendix 1 that the winding angle 
distribution for an N-step walk, P N ( 8 ) ,  is proportional to the integral of the term in 
square brackets in (2.13) with K replaced by N-1’2. That is, 

I , (  p ’ N - ” 2 ) K , ( R N - 1 ’ 2 )  - I,(RN-”’)K,( p’N”’’ )  
pN(8)cCsi --I elve C(v)( K , ( R N - ” 2 )  

(2.15) 

where 

(2.16) 

with C‘ a constant. 
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When the size of the excluded region goes to zero (2.15) is replaced by 

P N ( e ) a  1 eiY’ C ( v ) Z , v l ( p ’ N - ’ ’ 2 )  dv. 
X 

--x 

(2.17) 

This is the limit considered by Spitzer (1958). The properties of P N (  e)  as given by 
the right-hand side of (2.17) are very different in important respects from the properties 
of the winding angle distribution as given by (2.15). We now discuss the latter. 

We will concentrate on two predictions for the winding angle distribution. The 
first is for the behaviour of moments of the distribution. Recall that the Lorentzian 
distribution obtained by Spitzer-a distribution that follows directly from (2.17) as is 
shown in appendix 2-possesses second- and higher-order moments that are infinite. 
This is not a feature of the winding angle distribution as given by (2.15). The second 
property of P N ( e )  that will be discussed is its decay for large 8. What we find is that 
the decay of PN(  6) for large 0 is fundamentally different when there is an excluded 
region than when there is not. 

As a prelude to a detailed discussion of the moments of P N  (e)  we note the following 
connection between the moments of an arbitrary distribution, f (  e), and the properties 
of its Fourier transform 4( v), where 

00 

f (6)  = 5 4( v )  eiYe dv. 
-00 

(2.18) 

If f ( 0 )  is real and an even function of e (f(-@) = f ( 0 ) )  then d ( v )  will also be real 
and an even function of v. Using 8” e”” = i-” (d“ /dv”)  e’”’ we have 

c x c c  I-, + ( v ) e ”  eiu’ dv d e  

= O  otherwise. (2.19) 

In (2.19) 4 ( v )  has been assumed to be sufficiently well behaved at v=*too that 
integrations by parts can be carried out. The moment structure of P N ( e )  is thus 
controlled by the small-v behaviour of the term in large round brackets in (2.15). 

That the winding angle distribution PN ( e )  is even in 8 is manifestly obvious-at 
least for the kind of ‘non-chiral’ walks that we are considering here. We thus expect 
a Taylor expansion in v of the term in large round brackets in (2.15): 

(2.20) 

to consist of even powers only. We now establish this. 

functions, I ,  and K ,  (Abramowitz and Stegun 1964): 
First, we make use of the connection between the two kinds of modified Bessel 

7r z - ” ( x )  - Z L , ( X )  

2 sin(v.rr) 
K , ( x )  = - (2.21) 

If the power series expansion in v of Z , ( x )  consists entirely of integer powers of v 
then the corresponding expansion of K, (x )  will consist of even powers only. Consider, 



4428 J Rudnick and Y Hu 

now, the following integral representation of I,(x) (Abramowitz and Stegun 1964): 

exp(x cos e)  cos( ve) d e  -- sin(V7T) Iom exp(-x cosh(t) - vt) dt. (2.22) 
7T 

According to (2.22) such an expansion indeed exists. In fact, combining (2.21) and 
(2.22) we obtain the following integral representation for K,( x): 

K , ( x )  = exp(-x cosh(t)) cosh( u t )  dt. I,: (2.23) 

It is evident from this last result that the Taylor expansion in v of the modified Bessel 
function K , ( x )  will consist of even powers only. 

Applying (2.21) to the numerator of (2.20) we obtain the following result: 

I,( p‘N- l iZ )K , (  RN-Ii2) - I,( RN-”’)K,( P ‘ N ” ’ ~ )  

7 1  
2 sin( v7r) 

- (Iy( p’N”’2 ) I -v (  RN-Ii2) - I” (RN-’ I2 ) I -” (p ’N- l I2 ) ) .  (2.24) 

The numerator and the denominator of the right-hand side of (2.24) are both analytic 
functions of v consisting of odd powers only. Thus the numerator of (2.20) will, when 
expanded in powers of v, generate a series consisting of even powers only. 

The dominant dependence of P N ( 6 )  on the parameter v will be through one of 
the modified Bessel functions. Since 

I , (X) - (+x)y ryv+ i )  

as x + 0, a limit that is approached in (2.20) as N + CO, we have for small v 

=’[ V7T (i)” -($)-”I. 

(2.25) 

(2.26) 

Since pi= R there is no special N dependence of the low-order coefficients in the 
power series expansion of (2.26). However 

-7r -- - sinh[ v ln(iRN-l”)] 
sin( UT) 

” 

sin( va) sinh{ v[f In( N )  - ln(fR)]} -- - (2.27) 

as N + CO and v + 0. The behaviour of the moments of 8 will thus be determined by 
the expansion in v of the modified Bessel function K,(RN-”*) in the denominator 
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of (2.15). When N is sufficiently large we can neglect In(R) as compared to In( N )  in 
(2.27). We then have 

The mean square of 8, (e’), is equal to the ratio of the second to the zeroth moment 
of &,(e). Recalling (2.15) and (2.19) we see that this ratio is just the negative of the 
ratio of the second derivative with respect to v of the function 

) (2.29) 
- 1 ’ 2 ) K y ( R N - ” 2 )  - I , ( R N - ” ’ ) K , ( p ’ N - ’ ’ 2 )  

K, (  R N - ” 2 )  
qv)( IVb” 

at v = 0 to the function itself there. According to the development above, and especially 
(2.28), that ratio at large N yields 

(2.30) 

We can similarly obtain expressions for (e ’ “ )  (K(ln( N))’”) .  The coefficient d2,, 
multiplying (In(N))2” in 

(e’“) = dzn (ln(N))*” (2.31) 

is, as in (2.30), independent of R, the radius of the excluded region. Thus, even though 
it is necessary to keep the walker out of a finite region about the origin in order for 
second- and higher-order moments of the normalised winding angle distribution to be 
finite the moments themselves are independent of the size (and presumably other 
details) of the excluded region. 

We now turn to a discussion of the behaviour of the distribution itself, with special 
emphasis on the large-0 tail. We recall that the behaviour at large argument of a 
function will be governed by the properties at small argument of its Fourier transform. 
In particular, the way in which a function falls off at large argument will be determined 
by those non-analyticities of its Fourier transform that lie closest to the origin, assuming 
that the Fourier transform possesses non-analyticities at finite argument. It is thus 
necessary to study the analytic properties of (2.29). 

Once again the behaviour of interest is controlled by the modified Bessel function 
K,( RN-”’)  in the denominator. This function has zeros at imaginary values of v that 
lie very close to the real axis when the product RN-”* is very small, as it will be when 
the walk consists of a sufficient number of steps. Utilising (2.27) we see that when 
Y + i v’ ( v’ small) 

1 
sinh( v ‘ n )  

KJRN-”’)+ sin{ v’[$ In( N )  - ln(fR)]} (2.32) 

so that, when In(R) is negligible compared to In(N), the modified Bessel function 
goes to zero at v ’ =  27k/ ln(  N ) ,  where k is an integer. 

If we now carry out the integral over v in (2.15) by contour integration it is 
immediately evident that the large-@ behaviour of P N ( 0 )  will be governed by the 
contribution to the integral of the residue at the pole in the integrand that is closest 
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to the origin, According to the discussion immediately above that pole will be at 
v = *27ri/ln( N ) .  Substituting this value of v into ei"' we thus have 

(2.33) 

The distribution decays exponentially with 6' when 6' is large. Note that the details of 
the exponential decay are independent of the size of the excluded region. The only 
thing that matters is its existence. 

3. Simulations 

As a supplement to and check of our theoretical analysis we have generated winding 
angle distributions numerically in two and three dimensions. The results of these 
calculations have been used to verify two of the central predictions of that analysis. 
Recall (2.30) and (2.33): 

and 

If we write 

+ b, In( N )  + C ,  (3 .3)  

(3.4) - e[ln( Ph, (e))]-' = A += b, In( N )  + C, AT >> 1 

then, according to (3.1) and (3.2), 

and 

1 
2T 

b z = - = 0 . 1 5 9  . . . .  

We use our numerical calculations to check (3 .3)-(3.6) .  
Winding angle distributions were generated using two different approaches. In the 

first we performed an exact enumeration of all unrestricted two-dimensional walks of 
up to 72 steps on a square lattice. The second was a Monte Carlo type simulation of 
much longer walks. The exact enumeration utilised the recursion relation 

(Z*)-' 

C h , ( x ' , x ) =  c C,(X',X+l,) 
n = O  

(3 .7)  

(see (2.2)) with the initial condition C,(x', x) = 6,,,, and the constraint C N ( x ' ,  x) = 0, 
when x is at the origin. Our constraint thus creates an excluded region about the 
origin. All walks start on one of the lattice sites that is a nearest neighbour to the site 
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at the origin. We then calculated the quantities b , ( N )  and b , (N) ,  which are defined 
as follows: 

( e,) s i4  - ( e,) $* 
In( N + 4 )  -In( N )  b , i N )  = 

AN+4 - A N  

In( N + 4 )  -In( N ) ’  b,( N )  = 

( 3 . 8 ~ )  

( 3 . 8 6 )  

b ,  and b,  as given by (3 .5 )  and ( 3 . 6 )  ought to be the N+ CO limits of b , ( N )  and b , ( N ) .  
Our results are summarised in table 1 and the linear extrapolation plotted against 1/ N 
gives 

b ,  = 0.301 
b2 = 0.171. 

D = 2  { 
The Monte Carlo type simulations utilised a standard random number generator. 

The walks were performed on a square and  a simple cubic lattice. Once again, the 
starting point was one of the sites adjacent to the origin. The way in which we enforced 
an  excluded-region constraint is worth mentioning. If a given walker happened to 
step on the origin (in two dimensions) or  z axis (in three dimensions) we discarded 
the walk entirely and started over again. This replicates the effect of an  absorbing wall 
and is the proper way to exclude the region (Feller 1968). Keeping the walkers off 
the origin by having them take a step in another direction whenever they happen to 
step on the origin, no matter how that other direction is determined, is equivalent to 
placing a reflecting wall around the excluded region and does nor properly exclude 
the origin. We found that this latter procedure yields different winding angle statistics 
than does either the method we employed or  our theoretical analysis. 

We took 50 000 samples in our simulations for each of several values of N, where 
N ranged up  to 724.  The quantities b ,  and b, were obtained via least-squares fits to 
semilog plots. Figures 2 and 3 display the results of our simulations and the least-squares 
fits. Our results are also presented numerically in table 2 .  The quantities b ,  and b , ,  
as determined by least squares, are 

Table 1. Values o f  b , ( N )  and b 2 ( N )  from exact enumeration on a square lattice. The 
linear extrapolation plotted against 1/  N gives b ,  = 0.3010 and b, = 0.171 1. 

26 0.272 333 6044 
30 0.275 132 8123 
34 0.277 623 7972 
3s  0.279 811 1752 
42 0.281 724 7061 
46 0.283 399 6102 
50 0.284 869 4462 
54 0.286 163 8237 
58 0.287 307 9999 
62 0.288 323 1889 
66 0.289 227 1002 
70 0.290 034 5091 

0.211 252 3334 
0.205 836 6806 
0.201 692 6125 
0.198 424 6620 
0.195 788 6768 
0.193 622 6666 
0.191 813 9012 
0.190281 3258 
0.188 965 2896 
0.187 821 1302 
0.186 814 9561 
0.185 920 7669 
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I I I 1 1 

51n2 6Ln2 7 l n 2  B l n 2  91n2 101n2 
I n  N 

Figure 2. A plot suggesting (e2)”’ is asymptotically proportional to In(N)  for ordinary 
random walks on a square and cubic lattice. Our analytical results predict 0.289 for the 
slope. The simulation (by least-squares fitting) gives 0.301 for a square lattice and 0.293 
for a cubic lattice. 

Sin2 61n2 71n2 E h 2  91n2 l o i n 2  
Ln N 

Figure 3. A plot suggesting the quantity A (see equation (3.4)) is linearly proportional to 
In(N) with slope 0.175 for a square lattice and 0.174 for a cubic lattice. Comparing with 
the analytical result of0.159 there are about 10% discrepancies. A few possible explanations 
are given in 8 3.  

b, = 0.301 * 0.003 
b, = 0.175 * 0.001 

b,  = 0.293 * 0.003 

D = 2 :  

b2 = 0.174*0.005. 
D = 3 :  

(3.9) 

(3.10) 

Comparing the above with (3.5) and (3.6) we note small (=s IO%),  but non-negligible, 
discrepancies between analytical predictions and numerical results. There are a few 
possible sources for these differences. First, our analytical results hold in the limit of 
very large N. This regime may not be fully entered in our simulations. Note, for 
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Table 2. Values of ( ~ 9 ~ ) ’ ’ ~  and A (see equations (3.3) and (3.4)). These values are obtained 
by Monte Carlo simulation with 50 000 samples for each value of N .  

5.5 In 2 
6.0 In 2 
6.5 In 2 
7.0 In 2 
7.5 In 2 
8.0 In 2 
8.5 In 2 
9.0 In 2 
9.5 In 2 

1.7745 
1.8847 
1.9752 
2.0782 
2.1749 
2.2827 
2.3961 
2.5047 
2.6129 

0.9571 
1.0217 
1.0784 
1.1385 
1.1982 
1.2610 
1.3217 
1.3790 
1.4472 

1.6435 
1.7666 
1.8651 
1.9515 
2.0592 
2.1592 
2.2719 
2.3685 
2.4589 

0.8512 
0.9543 
1.0084 
1.0557 
1.1120 
1.1775 
1.2580 
1.3092 
1.3679 

example, that the values of b , ( N )  that are obtained in our exact enumeration are 
further away from the theoretical value of b2 than is our least-squares result, obtained 
by fitting to much longer walks. This quantity, however, is not nearly as easy to obtain 
as b,. First, we must fit a numerically generated winding angle distribution to a specific 
form for various N. Then it is necessary to perform a least-squares analysis of a plot 
of fitting parameters against N. The parameter of interest controls the distribution in 
the large 8 wings and may, therefore, be sensitive to statistical fluctuations associated 
with the finite number of walks in our samples. We thus expect larger errors in our 
determination of this quantity. The way in which the large N limit is approached and, 
in particular, the size and qualitative behaviour of the next-to-leading-order contribu- 
tions to the winding angle distribution is well worth studying. 

A possibility that cannot be ruled out as yet is that the random number generator 
that we used may have been responsible for some anomalies in the random walk 
statistics. 

Finally, there is the possibility of a fundamental shortcoming in our application 
of theory. The region excluded in our simulations is not circular and there may be 
some non-trivial effect on the winding angle distribution of the shape of the excluded 
region. Furthermore, the continuum approximation may not apply here. We do not 
expect either of these last two possibilities to pan out. Nevertheless we feel that there 
is a need for both more extensive simulations and a closer examination of our theoretical 
model. 

4. Conclusion 

The winding angle distribution for unrestricted walks has been calculated in the 
diffusion equation or continuum approximation. This represents a reappraisal of the 
problem as first addressed by Spitzer (1958). We find that the introduction of an 
excluded region about the origin changes the distribution in fundamental ways from 
the Cauchy form that Spitzer obtained. The new distribution, which decays exponen- 
tially for large winding angle rather than as the inverse square of the angle, possesses 
finite moments at all positive integer order. The fact that the second and higher 
moments of the Cauchy distribution are infinite renders it unacceptable as a complete 



4434 J Rudnick and Y Hu 

description of the winding angle distribution of real random walks on a lattice. It 
most certainly rules it out as a description of the statistics of entanglement for a 
self-intersecting chain polymer grown in the vicinity of a long straight rod. The excluded 
region about the origin is well motivated physically in the latter case and is a natural 
consequence of the restrictions that limit configurations in the former. 

We are able to formulate precise numerical predictions for the winding angle 
distribution, relating to both its behaviour at large winding angle and the relationship 
between its second moment and the number of steps in a long walk. In obtaining 
these predictions we relied on the existence of an excluded region, but the predictions, 
which are asymptotic in nature, are independent of details of that region, specifically 
its size. Our predictions were compared to both the results of exact enumeration of 
random walks with up to 72 steps and of simulations of walks consisting of up to 724 
steps. In all cases discrepancies between numerical results and our analytical predic- 
tions are no larger than 10%. The discrepancies that do exist are thus small but not 
quite negligible. As yet we have no firm explanation for them. 

At this point many questions remain to be answered. The most intriguing in our 
opinion have to do with the effects of excluded volume. Preliminary results from 
simulations of three-dimensional self-avoiding random walks indicate that their wind- 
ing angle statistics are not strikingly different from those of unrestricted walks. The 
second moment of the distribution, (e’),  appears to scale with the same power-or 
with close to the same power-of [ln(N)]’ as it does for the unrestricted walk. This 
is in contrast to the case in two dimensions where, as noted in § 1, (O’)aln(N) for 
the self-avoiding walk while (6 ’ )a  (In( N ) ) ’  when the walk is unrestricted. A renormali- 
sation group calculation seems an eminently worthwhile undertaking. This is especially 
so when we consider the physical implications of such a calculation. The self-avoiding 
walk models the statistics of a long-chain polymer. The desirability of precise quantita- 
tive results for the entanglement of a real chain polymer with a rod is evident. 

There are questions concerning the analysis performed in this paper that ought to 
be answered as well. The diffusion equation limit applies when the distribution of 
interest varies slowly on the scale of a step length. This in turn implies that in order 
for this limit to be applicable when an excluded region is introduced the size of that 
region ought to be large compared to a step length. Nevertheless, we find that our 
predictions are independent of the size of that region in the limit of long walks and 
that we recover Spitzer’s form for the distribution in the limit that its extent is vanishingly 
small. A more searching study of the way in which different limiting regimes arise 
seems an eminently worthwhile undertaking. 

It is worth noting that the approach to the Cauchy distribution is not uniform as 
the size of the excluded region goes to zero. As long as the region has a finite extent, 
no matter how small, exponential decay is recovered in the extreme wings of the 
distribution, and for long enough walks positive moments depend uniquely and 
universally on their length. The issues that need to be addressed are those of crossover. 
Their full resolution will only follow from further and deeper analysis. 
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Appendix 1. The limit of large N 

We are interested in extracting the coefficient of z N  in the power series expansion of 
P(6 ,  z ) ,  as given by (2.15) and (2.16). Combining the two we obtain 

(Al . l )  

where, as noted in § 2, the quantity K' is equal to z* - z. We find the coefficient of z N  
in (Al.1) by contour integration. In particular, we use the fact that if P( 6, z )  is analytic 
in the vicinity of z = 0, then the coefficient of Z" in its power series expansion is 

(A1.2) 

where the contour is counterclockwise, encloses the origin and has an  infinitesimal 
radius. 

We perform the integral by the method of steepest descents. This involves finding 
the extremum of the integrand. As it turns out, the z dependence in P(  6, z )  that plays 
the controlling role in this part of the process is in the factor 1/K2. We have to extremise 

(A1.3) 
1 -- - exp[ -In( z* - z )  - N In z ]  

Z K  

which is achieved when 

Z * - Z  = z* /  N .  (A1.4) 

This means that 

K = ( z * / N ) " 2 a  N-'". (A1,5) 

In accord with the method of steepest descents, we replace the integral (A1.2) with 
the integrand, the quantities z and K being eliminated with the use of (A1.4) and 
(A1.5). The expressions that follow (2.14) result from those substitutions-the constant 
z* being, in addition, set equal to 1. This last substitution leads to great simplification 
of presentation and has absolutely no effect on our central results. 

Appendix 2. The recovery of the limit of Spitzer 

Recall equation (2.17), which is our result for the winding angle distribution in the 
limit of an  excluded region of zero extent about the origin: 

r =  

P N ( e ) a  J eiy'C( v)Z,,,( , J ' N - ' ' ~ )  dv. 
-X 

(A2.1) 
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The argument of the modified Bessel function will be small for a long random walk. 
This allows us to use the limiting form (2.25). Thus we have for small v (which 
determines the behaviour for large 0 )  

PN(e )a  [ ei”e[(p, /2)N-’ /2]’”’dv= 
s 

elve exp(-(v) In[N’/22/p<]) d v  -- 
(A2.2) 

where C is a constant. This is just the Lorentzian, or Cauchy, distribution predicted 
by Spitzer. 

Appendix 3 

In this appendix we demonstrate that the integration over real v of (2.15) can be 
completed by closing in the upper half of the complex v plane. We also derive a more 
general result for P N ( 0 ) .  From (2.15) 

M O ) =  J-JW dv (A3.1) 
oc 

where 

(A3.2) 

In the limit x + 0 and small v the modified Bessel functions approach the following 
limiting forms: 

If we now take N >> 1 and insert (A3.3) and (A3.4) into (A3.2) we obtain 

sinh[ v In( p ’ /  R)]  
f ( v ) =  pK”(KP)sinh[v l n ( 2 / ~ R ) ]  dP 

(A3.4) 

(A3.5) 

where K = N-’/*.  
It can be readily verified from (A3.5) that f( U )  vanishes exponentially as the real 

part of v goes to plus or minus infinity. This means that we can transform the integration 
o f f (  v )  over real v into an integral around a closed contour by adding an infinite 
semicircle in the top half-plane. We then evaluate the integral by adding up the residues 
of the poles of the integrand that lie there. The relevant poles all lie on the positive 
imaginary axis, at 

i n r  
i n ( 2 / ~ R )  

v, = (A3.6) 
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(A3.7) 

As K + O  (or as N+co)  this integral converges, so P ' K  c n be replaced by its limit 
value of 0. Using an integral representation of the modified Bessel function K,(x) we 
have 

Iox los exp( -x cosh t )  cos ( ln(;y:R))x dx d t  
KUn(x)x dx  = K - ~  

= K - ~  Jar (Cosh t ) - 2  COS( nTt  ) dt. 
l n ( 2 / ~ R )  

(A3.8) 

Because C O S [ ~ T ~ / ~ ( ~ / K R ) ]  + 1 as K + 0 we are left in the limit of large N with the result 

(A3.9) lox K,Jx)x d x  = K - ~  Ios (cosh t ) - 2  d t  = K - ~  = 1/ N. 

We thus have the following result for P N ( 0 ) :  

02 

= ~ T K - *  (- l) '+ 'sin(nB) exp(-&/A) 
n = l  

sin( B) 
2[cos(B)+cosh(O/A)] 

= 2TK-2 

where 

and 

1 1 
A = - In - = -(In( N )  + In( z * ) )  +constants. 

2'77 ( K X )  2 T  

c, 

- C1 

pNie)-2[l+cosh(O/A)] 

- 
4[cosh( O/2A)I2 

where C1 is a constant. 

References 

(A3.10) 

(A3.11) 

(A3.12) 

(A3.13) 

Abramowitz M and Stegun I A 1964 Handbook of Mathematical Functions with Formulas, Graphs, and 
Mathematical Tables (National Bureau of Standards Applied Mathematics Series 55)  (Washington, DC: 
NBS) 

Belisle C J P 1986 PhD 7hesis University of California, Berkeley 
de Gennes P G 1975 J.  Physique Lerr. 36 L55 



443 8 J Rudnick and Y H u  

- 1979 Scaling Concepts in Polymer Physics (Ithaca, NY: Cornell University Press) pp  246-7 
Feller W 1968 Introduction to Probability n e o r y  and Its Application (New York: Wiley) ch X I V  
Fisher M E, Privman V and Redner S 1984 1. Phys. A :  Math. Gen. 17 L569 
Ma S K 1976 Modern Theory of Critical Phenomena (New York: Benjamin) pp 400-10 
Pitman J and Yor M 1986 Ann. Probab. 14 133-79 
Spitzer F 1958 Am. Math. Soc. Trans. 87 187 


